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ABSTRACT 
 
At present, most of ship hull form optimization design is based on 
deterministic parameters. However, in the actual engineering problem, 
there are many unavoidable uncertain factors. For instance, the ship 
speed may vary around the design speed due to wind, waves, flow and 
other environmental or human factors while sailing. The optimal ship 
based on deterministic parameters may fail to reach the predetermined 
target while parameters change. An uncertainty optimization method 
based on stochastic programming is applied to reduce the resistance of 
KCS considering uncertainty of ship speed in this paper. The whole 
optimization process is based on an in-house ship hull form optimization 
solver, OPTShip-SJTU. Comparison and analysis of the resistance and 
flow field between initial ship and optimal ship validates the rationality 
and effectiveness of uncertainty optimization based on stochastic 
programming in ship hull form optimization design field. 
 
 
KEY WORDS:  Ship hull form optimization; Uncertainty optimization; 
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INTRODUCTION 
 
As a core part of ship overall design, ship hull form design based on 
simulation-based design (SBD) technology, which is developed by 
combining the optimization technique and computational fluid dynamics 
(CFD) technique, plays a more and more important role in ship design 
field. There are three crucial elements for SBD optimization design 
process, automatic modification of ship hull geometry, high precision 
simulation method, and advanced optimization algorithms. 
 
However, a large number of alternatives should be evaluated during the 
optimization process. Establishing the approximation model as a 
surrogate is an efficient way to reduce calculation burden. Despite the 
high efficiency, approximation models have the disadvantage at the same 
time: the establishment of approximation models needs amounts of 
precision results as input, and output results are sensitive to internal 

parameters, so inevitably, error of output will occur due to some 
uncontrollable causes, which is expressed as uncertainty. Although this 
error or uncertainty has a small value in most cases, large deviation of 
the whole system can also be generated by continuous iterative 
computation. Therefore, it has an important theoretical and practical 
significance for considering the uncertainty of approximate model. 
 
Two uncertainty optimization methods are broadly applied in practical 
engineering: interval programming, stochastic programming. Interval 
programming only needs interval number, with the upper and lower 
bounds of the uncertain parameter, and more details can be found in Hou 
et al. (2017). By comparison, stochastic programming achieves optimum 
solution via random variable, with given probability density distribution, 
which reflects the actual situation better. Thus uncertainty optimization 
method based on stochastic programming, such as robust design 
optimization (RDO) and reliability-based design optimization (RBDO), 
has been widely used in many engineering fields, such as airplane 
component design (Steenackers et al. 2009), V6 engine design (Wang et 
al. 2009), and structural design (Lagaros et al. 2007), but with little use 
in ship hull form design field. 
 
An uncertainty optimization design based on stochastic programming for 
minimum resistance of KCS considering the uncertainty of ship speed is 
proposed in this paper. The whole optimization process is based on an 
in-house ship hull form optimization solver, OPTShip-SJTU. The 
geometry of hull form is modified by the free form deformation (FFD) 
method, and the main deformed areas are bow and stern. An efficient and 
robust potential theory, Neumann-Michell (NM) theory is integrated in 
the optimization process to evaluate the objective functions for ship 
hydrodynamics. The approximation model for the total resistance 
coefficient is constructed by Kriging method based on the samples 
produced by optimized Latin hypercube sampling (OLHS) method to 
shorten computation time. In the optimization process, Froude number is 
taken as a random variable with given probability density distribution 
(PDF), and a stochastic programming based on genetic algorithm (GA) 
is applied to solve this uncertainty optimization problem. Comparison 
and analysis of the resistance and flow field between initial and optimal 
hull validate the effectiveness of uncertainty optimization design for the 
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Fig. 1 The flow chart of the iterative optimization process 
 
related cases. The flow chart of the iterative optimization process is 
illustrated in Fig. 1. 
 
UNCERTAINTY OPTIMIZATION WITH STOCHASTIC 
PROGRAMMING 
 
Uncertainty optimization problem (Hou, 2017) can be described as the 
following equation: 
 

min ( , )
. . ( , ) 0

f x u
s t g x u

 ≤

                                                                                   (1) 

 
where x is a vector of design variables, u is a vector of uncertainty, f is 
the objective function and g is the restrictive function. 
 
In stochastic programming, a new objective function Ff(x) is defined as 
following, using a weighted-sum approach (Shimakage et al. 2011): 
 

( ) ( ) (1 ) ( )f f fF x x xαμ α σ= + −                                                             (2) 
 
where μf and σf are the expected value (EV) and standard deviation (SD) 
of the response function f at the design point x with the uncertainty u, 
where α is a weighting parameter, 0 ≤ α ≤ 1, that can be adjusted for the 
relative importance of EV and SD for the particular application. 
 
The following equations can be used to calculate EV and SD of the 
response function f that are needed for Eq. 2: 
 

( ) ( , ) ( )f x f x p dμ ξ ξ ξ=                                                                       (3) 

 
2 2( ) ( ( , )) ( ) ( ( ))f fx f x p d xσ ξ ξ ξ μ= −                                              (4) 

 
In Eqs. 3~4, ξ is the random variable for uncertainty u, and p(ξ) is the 
probability distribution function (PDF), which can be extracted from 
historical data. Once PDF obtained, the uncertainty optimization 
problem can be transformed into deterministic optimization problem and 

 

 
 
Fig. 2 An application of FFD method to modify a ship bow. 
 
solved. In this paper, the uncertainty of ship speed will be taken as an 
example. 
 
MODIFICATION OF HULL GEOMETRY 
 
Appropriate and effective surface modification methods are critical to 
optimization process. On the one hand, these techniques should modify 
hull forms efficiently and ensure the rationality of the new hull surface, 
on the other hand, the number of variables involved in these methods 
should keep as low as possible—too many design variables will increase 
the complexity of the problem and lead to vast computational cost. In 
this paper, FFD method is applied to modify the geometry of hull form. 
 
FFD technique, proposed by Sederberg and Parry (1986) based on 
trivariate Bernstein polynomials, is utilized to perform the deformation 
of solid geometric models in a free-form manner. In this method, the 
objects to be deformed are embedded into a plastic parallelepiped, and 
then these objects are deformed along with it. The modification of hull 
form is defined and controlled by using a few control nodes, and the 
displacements of them are utilized as design variables by optimizer. An 
application of FFD method to modify a ship bow is shown as Fig. 2 (Wu 
et al. 2017). 
 
NEUMANN-MICHELL THEORY 
 
A practical simulation tool is one of the main components for hull form 
optimization procedure. The optimizer is guided by the evaluating results 
involved thousands of alternatives toward the improved solutions, 
accordingly, both accuracy and efficiency are important for this tool. In 
this study, Neumann-Michell (NM) theory is employed to evaluate the 
drag of a ship hull.  
 
When a ship steadily advances at constant speed along a straight path in 
calm water of effectively infinite depth and lateral extent, the wave drag 
related to the waves generated by the advancing ship hull is of 
considerable practical importance because drag is a critical and dominant 
hydrodynamic factor for ship design. The Neumann–Michell (NM) 
theory is an efficient potential flow theory used to predict the ship waves. 
In this theory, both of the surface tension and the free surface 
nonlinearities are ignored for the practical goal, and the viscosity effect 
is estimated by considering the turbulent viscous boundary layer on a flat 
plate. This theory is the modification of the Neumann–Kelvin (NK) 
theory based on a consistent linear flow model. The main difference 
between the two theories is that the line integral around the ship waterline 
that occurs in the classical NK boundary-integral flow representation is 
eliminated in the NM theory, so the NM theory expresses the flow about 
a steadily advancing ship hull in terms of a surface integral over the ship 
hull surface.  
 
The Neumann-Michell potential representation and more details of this 
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theory are provided by Noblesse et al. (2013). This theory can yield 
realistic predictions of wave drags at low computational cost. Due to the 
simplicity and fast computation, the similar potential theory has been 
used for hull-form optimization (Kim et al. 2009; Kim et al. 2013). 
 
OPTIMIZATION MODULE 
 
Optimization module plays an important role in the optimization tool. 
The aim of this module is to minimize objective functions during the 
optimization process. A global optimal algorithm, genetic algorithm 
(GA), is adopted in present study. However, the computation associated 
with global optimal algorithm and simulation codes is very expensive, so 
a statistical approximation model with DOE method is employed to 
reduce the computational cost. 
 
Design of Experiment 
 
Constructing approximation model (or metamodels) based on computer 
experiments is becoming widely used in engineering to reduce the 
computational cost. In order to improve the space-filling property and 
computational efficiency in sampling, various design methods has been 
proposed, such as Latin hypercube design (LHD) (Simpson et al. 2001). 
 
In this work, optimal Latin hypercube sample method (Jin et al. 2005), a 
modified Latin hypercube design, is used for sampling. An application 
of optimal Latin hypercube design with two factors and nine design 
points is illustrated in Fig. 3. Fig. 3(a) shows the standard orthogonal 
array and Fig. 3(b) shows the random Latin hypercube design matrix. In 
Fig. 3(c), the optimal Latin hypercube design matrix is displayed, and 
the design points cover all levels of each factor as well as spread evenly 
within the design space. 
 

 
 

Fig. 3 Three types of experimental design method 
 
Mathematics of Kriging Model 
 
Kriging model (Simpson, 1998) is developed from mining and geosta-
tistical applications involving spatially and temporally correlated data. 
This model combines a global model and a local component: 
 

( ) ( ) ( )y x f x z x= +                                                                                (5) 
 
where y(x) is the unknown function of interest, f(x) is a known 
approximation function of x, and z(x) is the realization of a stochastic 
process with mean zero, variance 2σ̂ , and non-zero covariance. 
 
The kriging predictor is given by: 
 

1ˆ ˆˆ ( ) ( )Ty xβ β−= + −r R y f                                                    (6) 
 
where y is an ns-dimensional vector that contains the sample values of 
the response; R is the correlation matrix; f is a column vector of length 
ns that is filled with ones when f is taken as a constant; rT(x) is the 

correlation vector of length ns between an untried x and the sampled data 
points {x(1), x(2), ..., x(ns) } and is expressed as: 

( )(1) (2)( ) [ ( , ), ( , ),  ..., ( , )]snT Tx R x x R x x R x x=r                                        (7) 
 
Additionally, the Gaussian correlation function is employed in this work: 
 

2

1
( , ) exp[ ]dvni j i j

k k kk
R x x x xθ

=
= − −                                                    (8) 

 
In Eq. 6, β̂ is estimated as: 
 

1 1 1ˆ=( )T Tβ − − −f R f f R y                                                                           (9) 
 
The estimate of the variance 2σ̂ , between the underlying global model 
β̂ and y is estimated using Eq. 10: 
 

2 1ˆ ˆˆ [( ) ( )]T
sR nσ β β−= − −y f y f                                                           (10) 

 
where f(x) is assumed to be the constant β̂ . The maximum likelihood 
estimates for the kθ in Eq. 8 used to fit a kriging model are obtained by 
solving Eq. 11: 
 

2

0
ˆ( ) [ ln( ) ln ] 2max s

k
k n

θ
θ σ

>
Φ = − + R                                                    (11) 

 
Optimization Algorithm 
 
In this paper, genetic algorithm (GA) is adopted to drive the optimization 
procedure, which is successfully applied in many engineering fields. In 
genetic algorithm, each individual represent as a potential solution to 
problems. After generating a population of individuals, they are tested 
for fitness and scored by a certain fitness value. The more outstanding an 
individual is, the easier it is to make the heritage of their "genes" 
(encoded optimization variables) inherited by the next generation. The 
dominant individuals in the parental population produce the same 
number of offspring via variation or random crosses. After several 
generations, the algorithm converges to the optimal individual, which 
means the optimal solution. 
 
DEFINITION OF THE OPTIMIZATION PROBLEM 
 
Initial Hull Form 
 
The geometry of the initial model is presented in Fig. 4 and the principal 
dimensions of KCS in Table 1. The optimization is performed for the 
model scale. 
 
Table 1. Principal dimensions  
 

Principal 
dimensions

Full-scale ship Ship model

Lpp/m 230 7.28
Lwl/m 232.5 7.36 
B/m 32.2 1.019 
D/m 19 0.6013 
T/m 10.8 0.3418 
Cb 0.651 0.651 
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Fig. 4 Initial model of KCS 
 

 
 
Fig. 5 Deformed areas of bow and stern 
 
Table 2. Variable range of design variables 
 

Design variables Min Max
X1 (bow-x axis) -0.01 0.01 
Y1 (bow-y axis) -0.01 0.01 
Z1 (bow-z axis) -0.02 0.02 
Y2 (stern-y axis) -0.02 0.02 

 
Design Variables and Geometrical Constraints 
 
In FFD method, the modification of hull form is defined and controlled 
by using a few control nodes (red nodes in Fig. 5), and the displacements 
of them are utilized as design variables by optimizer. In this paper, the 
main deformed areas are bow and stern, shown in Fig. 5. There are totally 
4 design variables, X1, Y1, Z1, Y2; the first three respectively control 
the modification along x, y, z axis of bow, and the last one control the 
modification along y axis of stern. In order to ensure reasonable 
modification of hull form, the variable range of design variables are 
restricted as in Table 2. 
 
Additionally, some geometric constraints are imposed on the design 
variables. Thereinto, Lpp, D, B are fixed, and the change of displacement 
should be within ± 0.4%. 
 
Objective Function Considering Uncertainty of Ship Speed 
 
In this paper, minimum total resistance coefficient of KCS Ct is taken as 
the response function f, and the uncertainty of ship speed (Fr) is taken as 
the random variable ξ. Therefore, the objective function F(x) can be 
calculated in following equations: 
 

( ) ( ) (1 ) ( )Ct Ct CtF x x xαμ α σ= + −                                                         (12) 
 

( ) ( , ) ( )Ct x Ct x Fr p Fr dFrμ =                                                             (13) 

 
2 2( ) ( ( , )) ( ) ( ( ))Ct Ctx Ct x Fr p Fr dFr xσ μ= −                                   (14) 

 
The probability distribution function of Fr can be extracted from 
historical sailing data. But in this paper we simplify PDF based on 
following assumption: 

For a selected design ship speed, the actual ship speed follows a normal 
distribution about Vdesign; that is, 
 

actual designV V ν= +                                                                                 (15) 
 

where Vactual is the actual ship speed and ν is a normally distributed 
random variable with mean zero. This can be used to model the situation 
that the intended ship speed is Vdesign, but due to sea conditions the actual 
ship speed may vary. For this analysis, Fr follows a normal distribution 
with mean of 0.26 (μ) and standard deviation of 0.026 (σ). And the 
normally distributed probability distribution function (PDF) can be used 
in Eqs. 13~14, which is integrated over ± 3σ to cover approximately 
99.74% of the area under the normal curve. In addition, α in Eq. 12 is 
taken as 0.6 due to slight importance of EV in this problem. 
 
OPTIMAL RESULTS AND ANALYSIS 
 
In this paper, OLHS method is applied to generate a set consisting of 32 
sample points, which is used to construct the approximate model via 
kriging method. Before the optimization, the fidelity of surrogate models 
needs to be validated, generally by the cross-validation method (Fig. 6). 
In the cross validation, each sample point is evaluated from the Kriging 
surrogate model that is constructed by the other 31 sample points. It can 
be observed that the objective function values estimated by the surrogate 
model ( E

objf ) show a good agreement with these values directly evaluated 

by the NM theory ( C
objf ). Genetic algorithm obtain the optimal solution 

after iterations of 50 generations with the population size of 50 (Fig. 7). 
 

 
 

Fig. 6 Cross-validation result of surrogate model 
 

 
 

Fig. 7 Iterations and convergence of genetic algorithm 
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Table 3. Comparisons of Ct between initial hull and optimal hull in a 
range of Fr with ± 3σ 
 

 
Fr 

Ct (*10^-3) Reduction
(%) Initial Optimal 

0.1820 3.58073 3.45870 3.41 
0.2015 3.52208 3.42446 2.77 
0.2210 3.48480 3.41471 2.01 
0.2405 3.50281 3.44818 1.56 
0.2600 3.73334 3.68576 1.27 
0.2795 4.43083 4.32536 2.38 
0.2990 5.03440 4.95050 1.67 
0.3185 5.29945 5.18770 2.11 
0.3380 5.35514 5.27137 1.56 

 
Table 4. Comparison of EV and SD of Ct between initial and optimal 
hull considering uncertainty of ship speed 
 

 EV  SD
Fr 0.260 0.026 
Ct of initial hull 3.966E-3 5.839E-4 
Ct of optimal hull 3.896E-3 5.668E-4 
Reduction (%) 1.785 2.928 

 
Table 3 shows the numerical predictions of total resistance and the 
corresponding reductions for initial and optimal hulls in a range of Fr 
with ± 3σ. Fig. 9 illustrates the resistance reductions where the black 
solid line represents the initial hull and the red dotted line represents the 
optimal hull. It can be found that the optimal hull performs better while 
ship speed vibrates around design ship speed, and the expected value (EV) 
and standard deviation (SD) of total resistance coefficient are listed in 
Table 4. However, it seems confusing that Table 3 shows the reduction 
in Ct at the design speed is the smallest, which should be the largest 
among the speeds with current PDF. We think the reason may be that the 
initial hull performs better at the design speed than other speeds, so 
abundant and diverse modification of hull geometry should be applied to 
the optimization to get satisfactory result. 
 

 
 

 
 
Fig. 8 Comparison of transverse and longitudinal cross-section curve 
between initial hull and optimal hull 

 
 
Fig. 9 Comparisons of Ct between initial hull and optimal hull in a 
range of Fr with ± 3σ 
 
Fig. 8 shows the comparison of transverse and longitudinal cross-section 
curve between initial and optimal hulls. It can be obviously observed that 
bow and stern both become thinner, besides bow has a tendency to 
elongate and upwarp. Additionally, the reduction of displacement is 
0.34%. Figs. 10~11 depict the comparison of wave pattern and pressure 
distribution at design ship speed between initial and optimal hulls. 
Reduction of bow waves can be clearly observed via wave height 
contours in Fig. 10 and decrease of bow pressure can be found in Fig. 11. 
 

 
 
Fig. 10 Comparison of wave pattern between initial hull and optimal hull 
(Fr=0.26) 
 

 
 
Fig. 11 Comparison of pressure distribution between initial hull and 
optimal hull (Fr=0.26) 
 
 

∇: -0.34% 
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CONCLUSIONS 
 
An uncertainty optimization method based on stochastic programming is 
applied to reduce the resistance of KCS considering uncertainty of ship 
speed based on an in-house ship hull form optimization solver, OPTShip-
SJTU. For a selected design ship speed, the actual ship speed follows a 
normal distribution about the design ship speed. Based on this 
assumption, Froude number is taken as a random variable with given 
probability density distribution (PDF). During the procedure of 
optimization, the region of bow and stern is deformed with free-form 
deformation (FFD) method. The modification techniques are sufficiently 
flexible to generate a series of realistic alternative hull forms with a few 
number of design variables involved. A practical simulation tool based 
on the Neumann-Michell (NM) theory is implemented in the 
hydrodynamic performance evaluation module to predict the resistance. 
Optimized Latin hypercube sampling (OLHS) method and kriging model 
have been employed here to establish the relationship between the 
objective functions and the design variables to decrease computational 
effort. The optimizer based on genetic algorithm (GA) obtain the optimal 
hull eventually. 
 
Comparisons and analysis of transverse and longitudinal cross-section 
curve, resistance, wave pattern and pressure distribution between the 
initial and optimal hulls indicate that the optimal hull performs better 
than initial hull while ship speed vibrates around design ship speed. The 
result validates the rationality and effectiveness of uncertainty 
optimization based on stochastic programming in ship hull form 
optimization design field. And this paper could provide information and 
reference for ship hull form optimization with more complicated 
uncertainty. 
 
The future work will focus on applying abundant and diverse 
modification of hull geometry to the optimization to get better 
optimization effect. Otherwise, we will optimize Rt instead of Ct, so that 
the wetted surface area can be automatically taken into consideration. 
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